注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

苍茫大地的博客

 
 
 

日志

 
 
关于我

盒子里的梦想

文章分类
网易考拉推荐

卷积的物理意义(转载)  

2012-03-05 21:54:32|  分类: 默认分类 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |

卷积这个东东是“信号与系统”中论述系统对输入信号的响应而提出的。因为是对模拟信号论述的,所以常常带有繁琐的算术推倒,很简单的问题的本质常常就被一大堆公式淹没了,那么卷积究竟物理意义怎么样呢?

卷积表示为y(n) = x(n)*h(n)

使用离散数列来理解卷积会更形象一点,我们把y(n)的序列表示成y(0),y(1),y(2) and so on; 这是系统响应出来的信号。

同理,x(n)的对应时刻的序列为x(0),x(1),x(2)...and so on;

其实我们如果没有学过信号与系统,就常识来讲,系统的响应不仅与当前时刻系统的输入有关,也跟之前若干时刻的输入有关,因为我们可以理解为这是之前时刻的输入信号经过一种过程(这种过程可以是递减,削弱,或其他)对现在时刻系统输出的影响,那么显然,我们计算系统输出时就必须考虑现在时刻的信号输入的响应以及之前若干时刻信号输入的响应之“残留”影响的一个叠加效果。

假设0时刻系统响应为y(0),若其在1时刻时,此种响应未改变,则1时刻的响应就变成了y(0)+y(1),叫序列的累加和(与序列的和不一样)。但常常系统中不是这样的,因为0时刻的响应不太可能在1时刻仍旧未变化,那么怎么表述这种变化呢,就通过h(t)这个响应函数与x(0)相乘来表述,表述为x(m)×h(m-n),具体表达式不用多管,只要记着有大概这种关系,引入这个函数就能够表述y(0)在1时刻究竟削弱了多少,然后削弱后的值才是y(0)在1时刻的真实值,再通过累加和运算,才得到真实的系统响应。

再拓展点,某时刻的系统响应往往不一定是由当前时刻和前一时刻这两个响应决定的,也可能是再加上前前时刻,前前前时刻,前前前前时刻,等等,那么怎么约束这个范围呢,就是通过对h(n)这个函数在表达式中变化后的h(m-n)中的m的范围来约束的。即说白了,就是当前时刻的系统响应与多少个之前时刻的响应的“残留影响”有关。

当考虑这些因素后,就可以描述成一个系统响应了,而这些因素通过一个表达式(卷积)即描述出来不得不说是数学的巧妙和迷人之处了。

 

 


对于非数学系学生来说,只要懂怎么用卷积就可以了,研究什么是卷积其实意义不大,它就是一种微元相乘累加的极限形式。卷积本身不过就是一种数学运算而已。就跟“蝶形运算”一样,怎么证明,这是数学系的人的工作。
在信号与系统里,f(t)的零状态响应y(t)可用f(t)与其单位冲激响应h(t) 的卷积积分求解得,即y(t)=f(t)*h(t)。学过信号与系统的都应该知道,时域的卷积等于频域的乘积,即有 Y(s)=F(s)×H(s)。(s=jw,拉氏变换后等到的函数其实就是信号的频域表达式)
有一点你必须明白,在通信系统里,我们关心的以及 要研究的是信号的频域,不是时域,原因是因为信号的频率是携带有信息的量。
所以,我们需要的是Y(s)这个表达式,但是实际上,我们往往不能很容易的得到F(s)和H(s)这两个表达式,但是能直接的很容易的得到f(t)和h(t),所以为了找到Y(s)和y(t)的对应关系,就要用到卷积运算。
复频域。
s=jw,当中的j是复数单位,所以使用的是复频域。通俗的解释方法是,因为系统中有电感X=jwL、电容 X=1/jwC,物理意义是,系统H(s)对不同的频率分量有不同的衰减,即这种衰减是发生在频域的,所以为了与时域区别,引入复数的运算。但是在复频域计算的形式仍然满足欧姆定理、KCL、KVL、叠加法。
负的频率。
之所以会出现负的频率,这只是数学运算的结果,只存在于数学运算 中,实际中不会有负的频率。
卷积的过程就是相当于把信号分解为无穷多的冲击信号,
然后进行冲击响应的叠加。
 
有一个七品县令,喜欢用打板子来惩戒那些市井无赖,而且有个惯例:如果没犯大罪,只打一板,释放回家,以示爱民如子。

有一个无赖,想出人头地却没啥指望,心想:既然扬不了善名,出恶名也成啊。怎么出恶名?炒作呗!怎么炒作?找名人呀!他自然想到了他的行政长官——县令。

无赖于是光天化日之下,站在县衙门前撒了一泡尿,后果是可想而知地,自然被请进大堂挨了一板子,然后昂首挺胸回家,躺了一天,嘿!身上啥事也没有!第二天 如法炮制,全然不顾行政长管的仁慈和衙门的体面,第三天、第四天......每天去县衙门领一个板子回来,还喜气洋洋地,坚持一个月之久!这无赖的名气已 经和衙门口的臭气一样,传遍八方了!

县令大人噤着鼻子,呆呆地盯着案子上的惊堂木,拧着眉头思考一个问题:这三十个大板子怎么不好使捏?......想当初,本老爷金榜题名时,数学可是得了满分,今天好歹要解决这个问题:

——人(系统!)挨板子(脉冲!)以后,会有什么表现(输出!)?

——费话,疼呗!
——我问的是:会有什么表现?

——看疼到啥程度。像这无赖的体格,每天挨一个板子啥事都不会有,连哼一下都不可能,你也看到他那得意洋洋的嘴脸了(输出0);如果一次连揍他十个板子, 他可能会皱皱眉头,咬咬牙,硬挺着不哼(输出1);揍到二十个板子,他会疼得脸部扭曲,象猪似地哼哼(输出3);揍到三十个板子,他可能会象驴似地嚎叫, 一把鼻涕一把泪地求你饶他一命(输出5);揍到四十个板子,他会大小便失禁,勉强哼出声来(输出1);揍到五十个板子,他连哼一下都不可能(输出0)—— 死啦!

县令铺开坐标纸,以打板子的个数作为X轴,以哼哼的程度(输出)为Y轴,绘制了一条曲线:

——呜呼呀!这曲线象一座高山,弄不懂弄不懂。为啥那个无赖连挨了三十天大板却不喊绕命呀?

——呵呵,你打一次的时间间隔(Δτ=24小时)太长了,所以那个无赖承受的痛苦程度一天一利索,没有叠加,始终是一个常数;如果缩短打板子的时间间隔 (建议Δτ=0.5秒),那他的痛苦程度可就迅速叠加了;等到这无赖挨三十个大板(t=30)时,痛苦程度达到了他能喊叫的极限,会收到最好的惩戒效果, 再多打就显示不出您的仁慈了。

——还是不太明白,时间间隔小,为什么痛苦程度会叠加呢?

——这与人(线性时不变系统)对板子(脉冲、输入、激励)的响应有关。什么是响应?人挨一个板子后,疼痛的感觉会在一天(假设的,因人而异)内慢慢消失 (衰减),而不可能突然消失。这样一来,只要打板子的时间间隔很小,每一个板子引起的疼痛都来不及完全衰减,都会对最终的痛苦程度有不同的贡献:

t个大板子造成的痛苦程度=Σ(第τ个大板子引起的痛苦*衰减系数)[衰减系数是(t-τ)的函数,仔细品味]

数学表达为:y(t)=∫T(τ)H(t-τ)

——拿人的痛苦来说卷积的事,太残忍了。除了人以外,其他事物也符合这条规律吗?

——呵呵,县令大人毕竟仁慈。其实除人之外,很多事情也遵循此道。好好想一想,铁丝为什么弯曲一次不折,快速弯曲多次却会轻易折掉呢?

——恩,一时还弄不清,容本官慢慢想来——但有一点是明确地——来人啊,将撒尿的那个无赖抓来,狠打40大板!

傅立叶变换和卷积的物理意义

这里没有数学公式,倒不是像费曼那样高风亮节,而是这里输入公式太烦,不然...

突然说这个话题是因为在水房洗衣的时候,一数学系正在刮胡子的哥们突然问我傅立叶变换的物理意义是什么?当时我就死机了,不知怎么答。

傅立叶变换伴随了我四年,从数学分析课上学会计算,然后光学中的夫朗和费衍射,接着信号处理,然后是SRTP中的数字全息都和这个息息相关,可是,课堂上强调的是会算,会用就行了,而对其物理意义,书上语焉不详,老师只字未提。

傅立叶变换的产生,是一个叫约瑟夫.傅立叶的法国人《热的分析理论》中作为一个数学工具而引入的,所以它的发展一直在其工具出身的阴影下,对于其意义不同学科有不同版本的阐释,但更多的是作为一个计算工具辅助计算,所以要我说其有什么物理意义,一时间真的不知怎么回答。

于是我只好举个例子,傅立叶变换在光学上的物理意义。

我们都知道,会聚透镜(简单地说,就是普通的凸透镜啦)除了具有成像性质外,最有用的就是它还具有进行二维傅 立叶变换的本领。由物理光学可知,在单位振幅的平面光波垂直照明下 的夫朗和费衍射,恰好实现衍射屏透过率函数的傅立叶变换。

即一束光通过凸透镜在焦平面上采集到的图像即为这束光的频率空间信息,亦即数学上对这束光进行一次傅立叶变换后的结果。

所以傅立叶变换在这里的物理意义就是将光的空间分布转换为频率分布(相空间),在靠近原点的部分为图像低频部分,远离原点部分为图像高频部分。

这时那哥们就问:那么变换后高频部分对应图像的哪一部分呢?因为有个老师讲课时说,原来原点部分对应变换后距原点无穷远处,而原来的无穷远处则对应变换后的原点。(我突然想起了倒易空间,联想到这个没什么道理)

直觉上我觉得这样说是错误的,因为傅立叶变换并非一一对应的,频率空间上任何一处,哪怕只有一点都与原来的整幅图像有关,也就是说,这是非局域性的。

举个例子,全息图,任取全息图的一部分还原(做一次逆傅立叶变换)成的图像都是原来的整幅图像,但由于高频信息的缺失所以还原图像比原图像要模糊。

而频率空间体现的是什么呢?是原图像的变化程度。举个最简单的例子,一束平行光经过凸透镜后在焦平面(即频率空间)上会聚为一点,在数学上就是平面波函数经过傅立叶变换后得到一个常量(信号处理上又称为直流量),意思是原来的图像(平面波)没有"起伏"(即光强变化,因为是平行光),所以在原点(低频)处有一点强光,数学上是冲击函数,这样搞过信号的人大概会共鸣了吧。

没错!信号书上经典例题,对阶跃函数和冲击函数通过傅立叶变换在物理光学上的对应就是平行光通过凸透镜。

这就是傅立叶变换在光学上的物理意义,至于傅立叶变换在量子力学上的意义...不写公式光靠文字描述的话我讲不清楚。

还有就是卷积了,我只能说,它的图像意义便是两个函数随着自变量的变化不断重叠的面积的叠加,至于其物理意义我就说不清了,因为我接触卷积以来,它都只是计算工具,拉普拉斯变换啊之类的用于计算两个函数叠加的工具,变换之后又做逆变换,然后很方便地得出正确结果。

我知道这肯定是不足的,除了知道怎么算(这是基础!),然后知道图像意义,可是卷积肯定有对应的物理意义。工科老师上课时只是把这个当成一个工具,能用就行,可是这对学物理的我来说,对why有一种近似着魔的obsession,就像Nolan的《The Prestige》里面对决的两个魔术师一样...

P.S.Google卷积的物理意义得到的多数是定义,数学表达,图像意义,或者干脆给个例题:一个系统,其单位冲激响应为h(t),当输入信号为f(t)时,该系统的输出为y(t)。y(t)是f(t)和h(t)的卷积。


  评论这张
 
阅读(203)| 评论(0)
推荐 转载

历史上的今天

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017